Geometric numerical integration illustrated by the Störmer–Verlet method

نویسندگان

  • Ernst Hairer
  • Christian Lubich
  • Gerhard Wanner
  • G. Wanner
چکیده

The subject of geometric numerical integration deals with numerical integrators that preserve geometric properties of the flow of a differential equation, and it explains how structure preservation leads to improved long-time behaviour. This article illustrates concepts and results of geometric numerical integration on the important example of the Störmer–Verlet method. It thus presents a cross-section of the recent monograph by the authors, enriched by some additional material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dangers of Multiple - Time - Step Methods ∗ Jeffrey

In this work we demonstrate two potential dangers of multiple-time-step techniques for numerical integration of differential equations. This idea of using different time steps for different interactions was proposed in 1978 for molecular dynamics but undoubtedly has other useful applications. The use of multiple time stepping with the popular Verlet method was proposed in a 1991 paper. However,...

متن کامل

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

Special stability advantages of position-Verlet over velocity-Verlet in multiple-time step integration

We present an analysis for a simple two-component harmonic oscillator that compares the use of position-Verlet to velocity-Verlet for multiple-time step integration. The numerical stability analysis based on the impulse-Verlet splitting shows that position-Verlet has enhanced stability, in terms of the largest allowable time step, for cases where an ample separation of time scales exists. Numer...

متن کامل

Numerical integration of the equations of motion for rigid polyatomics: The matrix method

A new scheme for numerical integration of motion for classical systems composed of rigid polyatomic molecules is proposed. The scheme is based on a matrix representation of the rotational degrees of freedom. The equations of motion are integrated within the Verlet framework in velocity form. It is shown that, contrary to previous methods, in the approach introduced the rigidity of molecules can...

متن کامل

Symplectic Time-Stepping for Particle Methods

This paper surveys some of the fundamental properties of symplectic integration schemes for classical mechanics and particle methods in particular. The widely used Störmer-Verlet method is discussed in detail and implications of conservation of symplecticity on long term simulations are outlined. The second part of the paper describes the application of a Lagrangian particle method and the Stör...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003